Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • Tranh Tô Màu
  • Meme
  • Avatar
  • Hình Nền
  • Ảnh Hoa
  • Ảnh Chibi
  • Ảnh Nail
Tranh Tô Màu Meme Avatar Hình Nền Ảnh Hoa Ảnh Chibi Ảnh Nail
  1. Trang chủ
  2. chính tả
Mục Lục

Factorise $f(x) = x^3+4x^2 + 3x$

avatar
Xuka
06:08 24/08/2025

Mục Lục

Avoid the 'box method' which will only work for quadratics with nice integer roots and doesn't really tell you anything about what's going on.

Suppose we have a quadratic $p(x)$ that factorizes as:

$$ p(x) = (x + s)(x + t) $$

where we don't know what $s$ and $t$ are yet. If we multiply out the brackets, then we get:

$$ p(x) = x^2 + sx + tx + st = x^2 + (s+t)x + st $$

Now suppose that we are given $p(x)$ in the form

$$ p(x) = x^2 + bx + c $$

In order to factorize $p(x)$, all we need to do is find two numbers $s$ and $t$ such that $$s+t=b$$ and $$st=c$$

In your case, you want to find $s$ and $t$ such that $s+t=4$ and $st=3$. It shouldn't take you very long to realize that $s=3$ and $t=1$ will do. Then you can immediately factorize the polynomial as $(x+3)(x+1)$.

Slogan: To factorize a quadratic of the form $x^2+bx+c$, just find two numbers that add to give $b$ and multiply to give $c$.

Just for interest

This method should work for all the quadratics you see in Math 1, and I hope that it's a bit clearer what's going on compared to the 'Box Method'. You might be interested in how we solve quadratic equations that don't have nice solutions. For example, suppose we were trying to factorize $$ x^2+x-1 $$ We want to find two numbers that add together to give $1$ and multiply together to give $-1$. It turns out that the right two numbers are $$ frac{1+sqrt{5}}{2} $$ and $$ frac{1-sqrt{5}}{2} $$ How did I work those out? Well, I'll show you a method that was invented by the ancient Babylonians. Suppose we have two numbers $b$ and $c$ and we're trying to find two numbers $s$ and $t$ such that $s+t=b$ and $st=c$.

If we square the first equation, we get $$ b^2 = (s+t)^2 = s^2 + 2st + t^2 $$ Now since $st=c$, we can subtract $4c$ from the left hand side and $4st$ from the right hand side to get: $$ b^2-4c = s^2 - 2st + t^2 $$ But $s^2 - 2st + t^2=(s-t)^2$, so we may write $$ s-t = sqrt{b^2-4c} $$ (Here, we are free to assume that $sge t$, so this is the positive square root.) Now we can recover $s$ and $t$: $$ s = frac{(s+t) + (s-t)}{2} = frac{b+sqrt{b^2-4c}}{2} $$ $$ t = frac{(s+t) - (s-t)}{2} = frac{b-sqrt{b^2-4c}}{2} $$

0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Trang thông tin tổng hợp diendanmarketing

Website diendanmarketing là blog chia sẻ vui về đời sống ở nhiều chủ đề khác nhau giúp cho mọi người dễ dàng cập nhật kiến thức. Đặc biệt có tiêu điểm quan trọng cho các bạn trẻ hiện nay.

© 2025 - diendanmarketing

Kết nối với diendanmarketing

Trang thông tin tổng hợp
  • Trang chủ
  • Tranh Tô Màu
  • Meme
  • Avatar
  • Hình Nền
  • Ảnh Hoa
  • Ảnh Chibi
  • Ảnh Nail
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký